Transformations of Functions

Vertical Shifting

Vertical Shifts of Graphs
Suppose \(c > 0 \).

To graph \(y = f(x) + c \), shift the graph of \(y = f(x) \) upward \(c \) units.
To graph \(y = f(x) - c \), shift the graph of \(y = f(x) \) downward \(c \) units.

Example

\[f(x) = x^2 \]
\[g(x) = x^2 + 3 \]
\[h(x) = x^2 - 2 \]
Transformations of Functions

Horizontal Shifting

Horizontal Shifts of Graphs
Suppose $c > 0$.
To graph $y = f(x - c)$, shift the graph of $y = f(x)$ to the right c units.
To graph $y = f(x + c)$, shift the graph of $y = f(x)$ to the left c units.

Example

$g(x) = (x + 4)^2$ $f(x) = x^2$ $h(x) = (x - 2)^2$
Transformations of Functions

Reflecting Graphs

To graph \(y = -f(x) \), reflect the graph of \(y = f(x) \) in the x-axis.
To graph \(y = f(-x) \), reflect the graph of \(y = f(x) \) in the y-axis.

Examples
Transformations of Functions

Vertical Stretching and Shrinking

Vertical Stretching and Shrinking of Graphs

To graph $y = cf(x)$:

- If $c > 1$, stretch the graph of $y = f(x)$ vertically by a factor of c.
- If $0 < c < 1$, shrink the graph of $y = f(x)$ vertically by a factor of c.

Example

\[f(x) = x^2 \]
\[g(x) = 3x^2 \]
\[h(x) = \frac{1}{3}x^2 \]
Transformations of Functions

Horizontal Stretching and Shrinking

Horizontal Shrinking and Stretching of Graphs

To graph $y = f(cx)$:

If $c > 1$, shrink the graph of $y = f(x)$ horizontally by a factor of $1/c$.

If $0 < c < 1$, stretch the graph of $y = f(x)$ horizontally by a factor of $1/c$.

Example

References --- The following work was referenced to during the creation of this handout: *Algebra and Trigonometry: Fourth Edition* (Stewart, Redlin, Watson).