Tangent Lines (Derivatives)

1) Find an equation of the tangent line to the curve at the given point.

\[y = 2x^3 - x^2 + 2 \] ; \((1,3) \)

- First, find the derivative: \(y' = 6x^2 - 2x \)
- Remember that derivative equals slope, \(m \).

- Secondly, plug in the x-value from the point given, \((1,3)\) into the derivative.

\[y' = 6(1)^2 - 2(1) = 4 \]

therefore, \(m = 4 \)

- Thirdly, use point-slope formula to find the tangent line.

Point-slope formula: \(y - y_1 = m(x - x_1) \)

\[(1,3) = (x_1, y_1) \]

\[y - 3 = 4(x - 1) \]

\[y - 3 = 4x - 4 \]

\[y = 4x - 1 \] --this is the tangent line.

2) Find the equation of the normal line to the curve at the given point. \((1,3) \)

-> Normal line means perpendicular line.

- The slope, ‘m’ of a perpendicular line is the negative reciprocal, for example, if an equation has slope, \(m = \frac{2}{3} \), it’s perpendicular line will have slope, \(m = -\frac{3}{2} \).

- Since the our given equation had slope, \(m = \frac{3}{1} \), it’s normal line will have slope, \(m = -\frac{1}{3} \).

Now, use point slope formula again using slope, \(m = -\frac{1}{3} \)

Point-slope formula: \(y - y_1 = m(x - x_1) \)

\[(1,3) = (x_1, y_1) \]

\[y - 3 = -\frac{1}{3}(x - 1) \]

\[y - 3 = -\frac{1}{3}x + \frac{1}{3} \]

this is the normal line
Tangent Lines (Derivatives)

\[y - 3 = -\frac{1}{3}(x - 1) \]

\[y - 3 = -\frac{1}{3}x + 1/3 \]

The following works were referred to during the creation of this handout: *Stewart Calculus, 8th Ed.*