Trigonometric Transformations Graphing

Default Trig Function Graphs:

<table>
<thead>
<tr>
<th>Function</th>
<th>Graph 1</th>
<th>Graph 2</th>
<th>Graph 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sin(x)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period:</td>
<td>$\frac{2\pi}{b}$</td>
<td>$\frac{2\pi}{b}$</td>
<td>$\frac{\pi}{b}$</td>
</tr>
<tr>
<td>Csc(x)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period:</td>
<td>$\frac{2\pi}{b}$</td>
<td>$\frac{2\pi}{b}$</td>
<td>$\frac{\pi}{b}$</td>
</tr>
<tr>
<td>Sec(x)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period:</td>
<td>$\frac{2\pi}{b}$</td>
<td>$\frac{2\pi}{b}$</td>
<td>$\frac{\pi}{b}$</td>
</tr>
<tr>
<td>Cot(x)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period:</td>
<td>$\frac{2\pi}{b}$</td>
<td>$\frac{2\pi}{b}$</td>
<td>$\frac{\pi}{b}$</td>
</tr>
</tbody>
</table>
Trigonometric Transformations Graphing

Knowing the 4 Segments of Trig Transformations:

\[Y = A \cdot \sin [(B \cdot x - C)] + D \]

- \(A \) = amplitude
- \(B \) = period
- \(C \) = horizontal shift
- \(D \) = vertical shift

Note: If \(C \) is \(+\), the shift will be negative, aka to the left.

Example:
- \(2 \sin (2x - 4) + 3; C = 4 \)
- \(2 \sin (2x + 4) + 3; C = -4 \)

Finding the 4 Segments of Trigonometric Transformations:

Amplitude: Increases the range from the midline, commonly multiplied in front of the function

Example:
- \(Y = \sin (0) \quad Y = 1 \cdot 1, \) So \(Y = 1 \)
- \(Y = 3 \cdot \sin (0) \quad Y = 3 \cdot 1, \) So \(Y = 3 \)

Midline: this is the vertical shift of the function. If no value is found for the midline, the default vertical shift is 0.

Example:
- \(Y = \sin(x) \) has an oscillating line of \(D = 0 \)
- \(Y = \sin(x) + 3 \) has an oscillating line of \(D = 3 \)

Period: length it takes to complete one cycle.

Example:

\[\frac{2\pi}{b} \] is for \((\sin, \cos, \csc, \sec)\)

\[\frac{\pi}{b} \] is for \((\tan, \cot)\)

Note: \(B \) by default for every function will be 1.

Ex:
- \(\sin(x) \) period: \(\frac{2\pi}{1} \)
- \(\cot(x) \) period: \(\frac{\pi}{1} \)
Trigonometric Transformations Graphing

Phase shift: This is the horizontal shift of the function

Formula: \(\frac{C}{B} \)

Example:

\[Y = \sin (2x + 3) \]

Phase shift: \(-\frac{3}{2} \)

Where -3 is \(C \) and 2 is \(B \)

Practice Problems: Find the Amplitude and Period, then find the Midline and Phase shift if applicable

1. \(y = \sin (\pi \ast x) \)
2. \(y = 3 \ast \sin (x) \)
3. \(y = 2 \ast \sin (2x - \frac{\pi}{2}) - 1 \)
4. \(y = \sin (x - \frac{\pi}{2}) \)
5. \(y = \sin (x + \frac{\pi}{2}) \)
6. \(y = \sin (x) + 4 \)

Tip: Think of the period value as completing a full circle.

YOU TRY: Look at the graphs provided, look at the period lines (the vertical lines), and imagine connecting the circle together.

Ex: \(y = \sin(x) \)

Take the black dot on the left and connect it with the dot on the right, this is what a period looks like visually.
Trigonometric Transformations Graphing

A

B

C

D

E

F

Answers to Practice Problems

1 = B
2 = A
3 = E
4 = F
5 = C
6 = D

Reference: Sabrina V. method for graphing trig transformations